34 research outputs found

    Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources

    Get PDF
    We study the collective dynamics in a population of excitable units (neurons) adaptively interacting with a pool of resources. The resource pool is influenced by the average activity of the population, whereas the feedback from the resources to the population is comprised of components acting homogeneously or inhomogeneously on individual units of the population. Moreover, the resource pool dynamics is assumed to be slow and has an oscillatory degree of freedom. We show that the feedback loop between the population and the resources can give rise to collective activity bursting in the population. To explain the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen reduction for the collective dynamics of the population and singular perturbation theory to obtain a reduced system describing the interaction between the population mean field and the resources.Peer Reviewe

    Critical Parameters in Dynamic Network Modeling of Sepsis

    Get PDF
    In this work, we propose a dynamical systems perspective on the modeling of sepsis and its organ-damaging consequences. We develop a functional two-layer network model for sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the coevolutionary dynamics of parenchymal, immune cells, and cytokines. By means of the simple paradigmatic model of phase oscillators in a two-layer system, we analyze the emergence of organ threatening interactions between the dysregulated immune system and the parenchyma. We demonstrate that the complex cellular cooperation between parenchyma and stroma (immune layer) either in the physiological or in the pathological case can be related to dynamical patterns of the network. In this way we explain sepsis by the dysregulation of the healthy homeostatic state (frequency synchronized) leading to a pathological state (desynchronized or multifrequency cluster) in the parenchyma. We provide insight into the complex stabilizing and destabilizing interplay of parenchyma and stroma by determining critical interaction parameters. The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (response of the innate immune system) is represented by nodes of a duplex layer. Cytokine interaction is modeled by adaptive coupling weights between nodes representing immune cells (with fast adaptation timescale) and parenchymal cells (slow adaptation timescale), and between pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). The proposed model allows for a functional description of organ dysfunction in sepsis and the recurrence risk in a plausible pathophysiological context.Peer Reviewe

    Adaptive dynamical networks

    Get PDF
    It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks

    Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks

    Get PDF
    We propose a concept to generate and stabilize diverse partial synchronization patterns (phase clusters) in adaptive networks which are widespread in neuroscience and social sciences, as well as biology, engineering, and other disciplines. We show by theoretical analysis and computer simulations that multiplexing in a multilayer network with symmetry can induce various stable phase cluster states in a situation where they are not stable or do not even exist in the single layer. Further, we develop a method for the analysis of Laplacian matrices of multiplex networks which allows for insight into the spectral structure of these networks enabling a reduction to the stability problem of single layers. We employ the multiplex decomposition to provide analytic results for the stability of the multilayer patterns. As local dynamics we use the paradigmatic Kuramoto phase oscillator, which is a simple generic model and has been successfully applied in the modeling of synchronization phenomena in a wide range of natural and technological systems.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Modeling tumor disease and sepsis by networks of adaptively coupled phase oscillators

    Get PDF
    In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.DFG, 429685422, Kontrollierte Synchronisation in heterogenen Multischicht-NetzwerkenDFG, 440145547, Komplexe dynamische Netzwerke: Effekte von Heterogenität, Adaptivität und Topologie der KopplungenDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    The multiplex decomposition: An analytic framework for multilayer dynamical networks

    Get PDF
    First Published in SIAM Journal on Applied Dynamical Systems in Volume 20, Issue 4 (2021), published by the Society for Industrial and Applied Mathematics (SIAM).Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.Multiplex networks are networks composed of multiple layers such that the number of nodes in all layers is the same and the adjacency matrices between the layers are diagonal. We consider the special class of multiplex networks where the adjacency matrices for each layer are simultaneously triagonalizable. For such networks, we derive the relation between the spectrum of the multiplex network and the eigenvalues of the individual layers. As an application, we propose a generalized master stability approach that allows for a simplified, low-dimensional description of the stability of synchronized solutions in multiplex networks. We illustrate our result with a duplex network of FitzHugh--Nagumo oscillators. In particular, we show how interlayer interaction can lead to stabilization or destabilization of the synchronous state. Finally, we give explicit conditions for the stability of synchronous solutions in duplex networks of linear diffusive systems.DFG, 411803875, Dynamik gekoppelter Systeme mit Zeitverzögerungen und deren AnwendungenDFG, 440145547, Komplexe dynamische Netzwerke: Effekte von Heterogenität, Adaptivität und Topologie der Kopplunge

    Hierarchical frequency clusters in adaptive networks of phase oscillators

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chaos 29, 103134 (2019) and may be found at https://doi.org/10.1063/1.5097835.Adaptive dynamical networks appear in various real-word systems. One of the simplest phenomenological models for investigating basic properties of adaptive networks is the system of coupled phase oscillators with adaptive couplings. In this paper, we investigate the dynamics of this system. We extend recent results on the appearance of hierarchical frequency multiclusters by investigating the effect of the time scale separation. We show that the slow adaptation in comparison with the fast phase dynamics is necessary for the emergence of the multiclusters and their stability. Additionally, we study the role of double antipodal clusters, which appear to be unstable for all considered parameter values. We show that such states can be observed for a relatively long time, i.e., they are metastable. A geometrical explanation for such an effect is based on the emergence of a heteroclinic orbit.DFG, 411803875, Dynamik gekoppelter Systeme mit Zeitverzögerungen und deren AnwendungenDFG, 308748074, Komplexe dynamische Netzwerke: Effekte von heterogenen, adaptiven und zeitverzögerten Kopplunge
    corecore